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Mellem MS, Wohltjen S, Gotts SJ, Ghuman AS, Martin A.
Intrinsic frequency biases and profiles across human cortex. J Neu-
rophysiol 118: 2853–2864, 2017. First published August 23, 2017;
doi:10.1152/jn.00061.2017.—Recent findings in monkeys suggest
that intrinsic periodic spiking activity in selective cortical areas occurs
at timescales that follow a sensory or lower order-to-higher order
processing hierarchy (Murray JD, Bernacchia A, Freedman DJ, Romo
R, Wallis JD, Cai X, Padoa-Schioppa C, Pasternak T, Seo H, Lee D,
Wang XJ. Nat Neurosci 17: 1661–1663, 2014). It has not yet been
fully explored if a similar timescale hierarchy is present in humans.
Additionally, these measures in the monkey studies have not ad-
dressed findings that rhythmic activity within a brain area can occur at
multiple frequencies. In this study we investigate in humans if regions
may be biased toward particular frequencies of intrinsic activity and if
a full cortical mapping still reveals an organization that follows this
hierarchy. We examined the spectral power in multiple frequency
bands (0.5–150 Hz) from task-independent data using magnetoen-
cephalography (MEG). We compared standardized power across
bands to find regional frequency biases. Our results demonstrate a mix
of lower and higher frequency biases across sensory and higher order
regions. Thus they suggest a more complex cortical organization that
does not simply follow this hierarchy. Additionally, some regions do
not display a bias for a single band, and a data-driven clustering
analysis reveals a regional organization with high standardized power
in multiple bands. Specifically, theta and beta are both high in dorsal
frontal cortex, whereas delta and gamma are high in ventral frontal
cortex and temporal cortex. Occipital and parietal regions are biased
more narrowly toward alpha power, and ventral temporal lobe dis-
plays specific biases toward gamma. Thus intrinsic rhythmic neural
activity displays a regional organization but one that is not necessarily
hierarchical.

NEW & NOTEWORTHY The organization of rhythmic neural
activity is not well understood. Whereas it has been postulated that
rhythms are organized in a hierarchical manner across brain regions,
our novel analysis allows comparison of full cortical maps across
different frequency bands, which demonstrate that the rhythmic orga-
nization is more complex. Additionally, data-driven methods show
that rhythms of multiple frequencies or timescales occur within a
particular region and that this nonhierarchical organization is wide-
spread.

cortical rhythms; EEG/MEG; spectral analysis; clustering

TO UNDERSTAND THE FUNCTIONAL ROLES of brain rhythms, a
common approach has been to relate cognitive and motor tasks

to modulation of activity in specific frequency bands (or at
specific timescales). A far less common but promising ap-
proach has been to examine spontaneous rhythmic activity and
its organization across functionally specialized regions of the
brain. The implications of outlining a fundamental organiza-
tion of timescales in the brain are far-reaching, including
potentially furthering our understanding of how incoming
information over time is combined into complex representa-
tions (Hasson et al. 2015; Kiebel et al. 2008) and of how
interregional connectivity depends on frequency in typically
developing brains (Engel et al. 2001; Fries 2015; Palva and
Palva 2011; Singer 2013) and disordered states (Eggermont
and Tass 2015; Uhlhaas 2013).

Recent findings in nonhuman primates have examined in-
trinsic timescales and suggest that intrinsic periodic spiking
activity occurs on different timescales across cortical regions
(Murray et al. 2014). In recording spiking activity from seven
regions, collected over six data sets, the organization of these
timescales was found to follow a rough anatomically defined
hierarchy such that activity in sensory regions occurred at
faster timescales (~50–150 ms) whereas activity in higher
order regions occurred at slower timescales (~50–350 ms).

It is not clear, however, how this proposal can account for
findings from both monkey and human electrophysiology stud-
ies showing that rhythms within a region occur at multiple
timescales (Buffalo et al. 2011; Heusser et al. 2016; Keitel and
Gross 2016; Mantini et al. 2007; van Kerkoerle et al. 2014).
For example, both gamma and alpha rhythms are observed in
visual cortex (Lozano-Soldevilla et al. 2014; Michalareas et al.
2016; Sellers et al. 2015), although they may be segregated by
cortical layer (Buffalo et al. 2011; van Kerkoerle et al. 2014;
Xing et al. 2012). These concerns suggest that an approach of
comparing power across different frequency bands to find a
frequency bias may help us evaluate this hierarchy proposal
more comprehensively than the autocorrelation approach pre-
viously taken (Murray et al. 2014). Additionally, a fuller
evaluation of the hierarchy proposal necessitates examining a
larger set of brain regions, ideally the full cortex. Although
some studies have examined electrophysiological timescales of
operation, they are limited in focus on visual cortex (Gauthier
et al. 2012), on resting-state networks defined by MRI blood
oxygen level-dependent (BOLD) fluctuations (Mantini et al.
2007), and on placement of electrocorticographic (ECoG)
subdural electrodes (He et al. 2008). Thus our unconstrained,
whole brain approach is able to more comprehensively evalu-
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ate a timescale hierarchy. It also is not yet known if a similar
timescale hierarchy is present in humans. For these reasons, we
took the approach of studying human subjects with magneto-
encephalography (MEG), which can give a full cortical map-
ping.

Our two main questions with this study are 1) Does the
hierarchical organization of timescales hold if we examine the
whole cortex in humans? and 2) If it does not hold, what is
the relationship between rhythmic neural activity and cortical
region? Answering these questions involved the use of both
hypothesis-driven and data-driven analyses of spontaneous or
“resting-state” MEG. To answer the first question, we devel-
oped a novel approach to spectral power analysis. Specifically,
power across different frequency bands must be compared to
test for a frequency bias for a given region, but power decays
from lower to higher frequencies with a 1/f slope (Buzsáki
2006). Because each rhythm is relevant to neural processing on
its own scale (i.e., delta operates in the brain on a very different
scale from gamma, but both are relevant), we estimated each
frequency band’s scale from cortical source estimates and
standardized each band’s power in each region. Comparisons
of standardized power across the spectrum revealed a cortical
organization of timescales that cannot simply be explained by
a hierarchy with biases to a single frequency band. Our statis-
tical approach for comparing frequencies is key to addressing
the hierarchy question and has not been done before to our
knowledge. To address the second question, we used a clus-
tering approach to elucidate the general spectral profiles of
cortical regions and how multiple frequency bands may be
grouped.

MATERIALS AND METHODS

Subjects. Thirty-three subjects participated in the study. Two sub-
jects were excluded due to excessive head motion, and one was
excluded for a MEG recording irregularity during the scan that
rendered the scan unusable. Thus 30 subjects remained in all subse-
quent analysis (9 women; mean age 25.1 yr, SD 5.1 yr). All subjects
were screened and did not report any neurological or psychiatric
problems. Written informed consent was obtained from each subject
in accordance with a National Institutes of Health Institutional Review
Board-approved protocol. Subjects were paid for their participation.

MEG acquisition. For each subject, whole head MEG was recorded
with 275 radial gradiometers (273 of which were functional) at 600
Hz inside a shielded room (VSM MedTech, Coquitlam, BC, Canada).
Spontaneous data were collected for 5 or 10 min while subjects fixated
on a centrally presented cross. Synthetic third-order gradient noise
cancellation was used during each scan. Head position was tracked
using coils placed at three fiducial points (the nasion, left and right
preauricular points) as recommended by several experts (Hansen et al.
2010; Hari and Puce 2017). Head motion was calculated from the root
mean squared maximal displacement across the three fiducial chan-
nels, and subjects with �10-mm movements were excluded from
further analysis. Of the remaining subjects, the mean maximum
motion was 3.1 mm (SD 2.2 mm). An electrooculogram (EOG) was
also collected. A bipolar EOG electrode was placed above and at the
outer canthus of each subject’s left eye to record eyeblinks and eye
movements.

Structural MRI acquisition. A 3-Tesla scanner (GE Signa) was
used to acquire structural MRIs. A high-resolution T1-weighted whole
brain volume was acquired for each subject, and automatic recon-
struction in FreeSurfer was used to create each subject’s cortical
surface model. MEG data and surface models were then aligned using
the three fiducial points. The white matter surface of the model was

segmented into 150,000 vertices per hemisphere and then decimated
to 4,000 source dipoles per hemisphere, spaced ~10 mm apart. Each
subject’s source space was morphed to FreeSurfer’s fsaverage com-
mon space using 2,562 dipoles per hemisphere for group-level
analysis.

MEG preprocessing. We first visually inspected all data for general
data quality and recorded any channels with substantial respiratory
artifacts. Artifact removal was done using the FieldTrip MATLAB
toolbox (Oostenveld et al. 2011) and custom MATLAB scripts. To
remove low-frequency drift, any respiratory artifacts, and any DC
offset, we used a fourth-order Butterworth filter to bandpass the data
between 0.5 and 150 Hz and two notch filters (forward and reverse
Butterworth filter to provide a zero-phase output) at 60 and 120 Hz to
remove line noise. We then performed independent components
analysis (ICA; Jung et al. 2000) using FieldTrip to decompose the
MEG sensor data into 273 independent components (ICs) and subse-
quently isolate and remove ICs corresponding to eyeblinks, other eye
movements, and cardiac artifacts. ICs were identified as being a
cardiac artifact if the IC had both regular peaks every 667–1,667 ms
in its time series and a peak in its spectrum between 0.6 and 1.5 Hz
(mean no. of cardiac ICs removed � 1.67, SD 0.69). Ocular muscle
artifact ICs were identified by comparing ICs with EOG time courses.
ICs with a typical frontally biased pattern and that had eyeblink
artifacts at the same time as artifacts seen in EOG channels were
identified as oculomotor artifacts and removed (mean no. of oculo-
motor ICs removed � 3.06, SD 2.0). Occasionally ICs contained
horizontal eye movement artifacts or jump artifacts, and these were
removed also. Remaining ICs were reassembled for further analysis.

Because muscle artifacts are prominent in the higher frequencies,
we chose to remove them before further analysis of the gamma bands.
Visual inspection revealed muscle artifacts that were transient, large-
amplitude, high-frequency oscillatory bursts in a subset of subjects.
We used a semiautomated z-score approach to remove them (imple-
mented in FieldTrip and custom code). Because muscle artifacts most
commonly occur in the gamma range, we bandpass filtered the data
between 30 and 150 Hz to search for muscle artifacts. The time series
of each channel was then z-transformed by the mean and SD of that
channel. Because muscle artifacts often occur across many channels,
a summary z-score time course can be obtained by averaging z scores
sample by sample across the 273 channels. Each sample of the
averaged z-score time series that exceeded an individually set z-score
threshold was marked (with 1-s padding on either side), and contig-
uous samples were inspected in the raw data to confirm the existence
of a muscle artifact. If the individual z-score threshold identified too
few muscle artifacts (true positives) or too many sections without
muscle artifacts (false positives), the threshold was adjusted. In a few
cases, some very subtle low-amplitude muscle artifacts were left in to
avoid removing tens of seconds of clean data. Samples corresponding
to the identified muscle artifacts were then automatically removed
across all channels, and a five-sample spline interpolation was inserted
in each channel’s time series to avoid sharp discontinuities in the data.
On average, 2.85% (SD 3.16%) of data was removed for muscle
artifacts across subjects. Additional steps to investigate associations
between gamma activity due to muscle activity and the source-
localized gamma were taken. We examined any associations between
eye movements and gamma localized to the cortical surface across
subjects. Because the EOG provides a separate measurement domi-
nated by ocular muscle movements, we performed spectral analysis of
the EOG channel and examined Pearson’s correlations between
gamma (30–50 Hz) of EOG and each of the 148 regions of interest
(ROIs), between high gamma 1 of EOG and all ROIs, and between
high gamma 2 and all ROIs. Of these 444 tests, only 2 returned a
significant correlation, mainly due to a single outlier: the left and right
calcarine sulcus were correlated with high gamma 1 (� � 0.36, P �
0.049; � � 0.37, P � 0.045, respectively). After false discovery rate
(FDR) correction for the 444 tests, neither was still significant. Thus
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cortical gamma does not seem to be confounded with ocular muscle
movements in the current study.

Source analysis allows estimation of the locations and time courses
of cortical sources from the magnetic fields measured at the scalp. We
used the minimum norm estimate (MNE) distributed source model to
approximate the sources of cortical currents (Hämäläinen and Ilmoni-
emi 1994) simultaneously and the corresponding MNE software
toolbox (Gramfort et al. 2014) for the following analysis. The MNE is
calculated by finding a linear inverse operator that transforms the
measured MEG channel-level data to current sources on the cortical
surface. First, a forward model is created that transforms orthogonal
unit current dipoles at each vertex to scalp magnetic field projections
and is constrained by a boundary element model (Hämäläinen and
Sarvas 1989). This, along with noise and source covariance matrices
and a weighting factor of 3 to avoid magnification of errors in the data
(Hämäläinen 2009; MNE software version 2.7), is used to compute
the inverse operator. Ten minutes of empty room MEG data are
collected just before each subject’s scan and used to calculate the
noise covariance matrix (Ghuman et al. 2011), whereas the full 5- to
10-min spontaneous data recording is used for the source covariance
matrix and the source projections. Other constraints included a loose
orientation constraint where the component of the source covariance
matrix normal to the surface is multiplied by 1 and the component
transverse is multiplied by 0.4 (because cortical neurons are oriented
perpendicular to the cortical surface). The MNE is also biased toward
superficial currents, so a depth weighting factor of 0.8 is also applied
to compensate (Lin et al. 2004). After each subject’s channel time
courses were projected onto their individual reconstructed cortical
surface, the surface sources were transformed into a common neural
space using FreeSurfer’s fsaverage brain.

MEG spectral analysis. Spectral power analysis was then used to
investigate the timescales of rhythmic activity at each source. The
power spectrum is a decomposition of a time series into Fourier
components representing the squared amplitude of each frequency
component in the time series. In this way, both the power at each
frequency, f, and the timescales, or periods (1/f), can be estimated
from the time series, and the relative contribution of different fre-
quencies can be assessed. For each subject, the first 5 min of the time
series at each source-localized vertex were windowed with a Ham-
ming function and power was estimated using a periodogram. Because
sources farther from the scalp are weaker and result in weaker spectra
primarily from the drop-off of a magnetic field with distance and not
from differences in neural processes, the power spectrum of each
vertex was normalized over our band of interest, the range from 0.5 to
150 Hz. We also confirmed that both raw and normalized spectra from
medial and ventral regions reflected neurophysiological data in that
they had a 1/f slope, had an alpha bump, and differed significantly
from room noise that was projected back through the source model.
To summarize power spectra across vertices, we averaged the spectra
within each of 148 ROIs from the Destrieux atlas (Destrieux et al.
2010). Each ROI is defined anatomically by gyral and sulcal bound-
aries. Spectral power was also divided into several typical frequency
bands: delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–14 Hz), low beta
(14–20 Hz), high beta (20–30 Hz), low gamma (30–50 Hz), high
gamma 1 (50–100 Hz), and high gamma 2 (100–150 Hz). The beta
band is sometimes examined as a single unit, although in this case we
separate it into two, because low- and high-beta bands have been
shown to respond differently during deep brain stimulation (Müsch et
al. 2017; Oswal et al. 2016). Also, although the higher gamma bands
are often not examined because of muscle artifact contamination, we
chose to analyze them because they may reflect different types of
activity (Crone et al. 2011), and recent results suggest MEG is
sensitive to this part of the spectrum (Rutter et al. 2009). In this
manner we determined power estimates for each frequency band in
each ROI, and these data are available as Supplemental Material in the
form of comma-separated values (.csv) files (both grand average and
individual subjects). (Supplemental Material for this article is avail-

able online at the Journal of Neurophysiology website.) Because
parametric tests were used at a later stage, we applied a power
function to the data (we found x1/6 worked well empirically) and
tested for normality of each distribution of each frequency band at
each ROI using the Lilliefors test (lillietest function in MATLAB).
Because the vast majority of these distributions passed the Lilliefors
test, we proceeded with parametric statistics for the main analysis. In
comparing power across frequency bands to determine dominant
timescales or frequencies, we are limited by the typical 1/f slope of the
neurophysiological power spectrum. For example, whereas power in
the lowest part of the delta frequency band (�1 Hz) is commonly the
greatest across much of cortex, it can be argued that rhythmic activity
at each frequency is relevant while operating on its own scale. For
example, although relatively very small, gamma oscillations are
involved in processing in visual cortex (Buffalo et al. 2011), whereas
delta oscillations are not thought to be consequential in this region.
Thus we chose to standardize power separately within each band
before making comparisons across frequencies. This was done by
estimating the relevant scale of each frequency band by examining
power across the 148 ROIs. For each band, the mean and SD of power
were calculated across ROIs, and z scores were calculated with these
measures to create standardized power measures at each ROI. The
standardized power data are also available as Supplemental Material
(.csv files; both grand averaged and individual subjects). Robustness of
these estimates were demonstrated through interindividual variability and
split-cohort reliability calculations. We calculated the interindividual
variability by calculating the standard deviation of the standardized
power maps. We performed the split-cohort analysis by dividing subjects
into even and odd subgroups, calculating the standardized power maps
for both subgroups, and correlating those maps ROI to ROI across the
two groups with Pearson’s correlations.

The dominant frequency of an area is then simply defined as the
band (among all 8) with the largest z score. To test for a robust
frequency bias effect in each ROI, where the null hypothesis is that no
difference exists between standardized power in each band, we tested
for a difference in standardized power using a one-way repeated-
measures ANOVA (148 tests) and used the FDR (Genovese et al.
2002) to correct for multiple comparisons. If the ANOVA was
significant in a particular ROI, we then tested if the standardized
power of the dominant frequency was greater than that in the remain-
ing seven bands via paired one-sided t-tests (7 tests per ROI) and
corrected for all tests again using FDR (q � 0.05). For ROIs that
passed all seven tests, this area was considered to have a strong
frequency or timescale bias. For regions where the ANOVA was
significant but fewer than seven post hoc t-tests were passed, this
region was considered to have a weak bias. Although the Lilliefors
test suggests that the vast majority of distributions were normal, the
analyses were also repeated with the associated nonparametric tests
(Friedman and Wilcoxon signed-rank tests) and also FDR corrected.
All analyses were implemented in MATLAB using built-in functions
and custom code.

MEG cluster analysis. Because many regions did not have a strong
frequency bias, we performed a data-driven analysis of the spectrum
to identify if multiple frequency bands might be more consistently
dominant together and if these formed canonical spectral profiles
across the cortex. To examine the number of distinct canonical
spectral profiles across the cortex and how regions grouped by those
profiles, we used K-means cluster analysis to cluster regions based on
the standardized power in the eight frequency bands. Because we
wanted to examine how reliable ROI cluster assignments were across
subjects, we used all subjects’ ROIs (30 subjects � 148 ROIs � 4,440
total ROI patterns) as observations and their standardized power
measurements (8 bands) as dimensions or features. For each ROI, the
overall cluster membership was assigned on the basis of plurality vote
[the cluster with the most subjects choosing it, which is not neces-
sarily the majority (�15/30 in this study), especially in cases where
k � 2 clusters). Clustering results were examined for k � 2 through
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k � 10 clusters. Several measures were then examined to pick a k that
best captured the cortical frequency organization. First, the variance
explained was examined for each k by calculating the total sum of
squares minus the within-cluster sum of squares and dividing by the
total sum of squares for a percentage measure. Also, the reliability of
a particular ROI being assigned the same cluster across subjects was
assessed using nonparametric statistics. Control distributions were
constructed by first randomly assigning an ROI for each subject to a
cluster (out of k) and summing the number of subjects with each
cluster assignment. We repeated this process 10,000 times to build a
null distribution for each choice of k. We then compared the number
of subjects matching the actual plurality cluster assignment with the
null distribution to calculate the probability that this number was
significantly greater than the null values (with � � 0.05). Finally,
using the derived P values, we performed FDR correction (q � 0.05)
over the 148 ROI tests. This nonparametric approach was used for
each choice of k, and the number of ROIs failing to survive FDR
correction were tabulated. Similarity matrices were calculated for
each cluster to examine the strength and uniqueness of cluster mem-
bership for a given ROI. Finally, multidimensional scaling was also
used to assess the cluster groupings of ROIs in a more visually
appropriate two-dimensional (rather than 8-dimensional) plot. The
K-means algorithm was performed many times for each k (at least 10
times) with many random starting cluster assignments to assess
stability (i.e., are the same clustering results returned each time?), and
the results were highly consistent across each repetition. All analyses
were implemented in MATLAB using built-in functions and custom
code.

RESULTS

To address our first question—Does the hierarchical orga-
nization of timescales hold if we examine the whole cortex in
humans?—we compared measures of source-localized, stan-
dardized power (see MATERIALS AND METHODS for details) from
spontaneous MEG data across eight frequency bands in each
region of the Destrieux parcellation to find the timescale bias of
each region. Cortical standardized power maps are shown as
pial maps in Fig. 1 for each frequency band with each map
scaled to the maximum and minimum z scores of that band to
illustrate their cortical locations. Although the three gamma
bands appear very similar and are illustrated separately in Fig.
1, statistical tests presented below demonstrate some differen-
tiation between them. For each frequency band, clear regional
differences in standardized power appeared across the cortex.
Delta power (0.5–4 Hz) peaks in medial frontal regions and is
very strong in lateral frontal, insular, and primary auditory
(transverse temporal gyrus/sulcus) regions. Theta (4–8 Hz) has
a similar regional profile but is weaker in insula and the
transverse temporal cortex. Alpha (8–14 Hz) is strongest in
occipital and parietal regions. Low beta (14–20 Hz) is stronger
over sensorimotor and parietal cortex, whereas high beta
(20–30 Hz) is stronger in sensorimotor and frontal cortex.
Standardized power in the three gamma bands (low gamma,
30–50 Hz; high gamma 1, 50–100 Hz; high gamma 2, 100–
150 Hz) is strongest in ventral and lateral temporal and frontal
regions.

We also calculated the interindividual variability by calcu-
lating the standard deviation of the standardized power maps.
This is shown in Fig. 2 as standard deviation of the z scores,
and generally most regions have low variability, suggesting
that the standardized power maps are fairly consistent across
individual subjects. Interestingly, parts of the visual and infe-
rior temporal cortex show greater variability in several bands.

We also performed a split-cohort analysis by dividing subjects
into even and odd subgroups, calculating the standardized power
maps for both subgroups, and correlating those maps ROI to ROI
across the two groups. The Pearson’s correlation coefficient was
consistently very high across all bands (0.93 for delta, 0.98 for
theta, 0.99 for alpha, 0.96 for low beta, 0.96 for high beta, 0.93 for
low gamma, 0.96 for high gamma 1, 0.97 for high gamma 2),
suggesting these maps are highly reliable.

Next, for each ROI, the frequency band with the greatest
standardized power (max power) was determined and com-
pared with the standardized power in the remaining seven
bands to examine frequency biases. In all ROIs the dominant
frequency was significantly greater than at least one other
frequency (ANOVA, P � 0.05, FDR corrected for 148 tests),
suggesting that in no region was standardized spectral power
flat. Of 148 ROIs, 67 displayed a strong frequency bias where
all 7 post hoc tests were significant (paired, 1-sided t-test, P �
0.05, FDR corrected for 148 � 7 � 1,036 tests). These regions
and their respective dominant frequencies are displayed in Fig.
3A (see color legend at left for frequency bias of a region).
Most frequency bands were well represented in the dominant
frequencies, but this map does not obviously relate to a sen-
sory-to-higher order hierarchical scheme. For example, higher
frequencies such as high beta and high gamma 2 are in higher
order areas such as lateral frontal and superior/inferior tempo-
ral gyrus, respectively, and delta power is dominant in the
transverse temporal cortex, a primary sensory region. Note that
the ANOVA results presented in Fig. 3A demonstrate some
statistical differentiation between the gamma bands, i.e., one of
the three gamma bands is strongly biased over the others in
some frontal and temporal regions. For each ROI, the number
of t-tests passed was summed, and a histogram (Fig. 3C)
demonstrates that a slight majority of regions did not have a
strong bias; in fact, many regions had two to three frequencies
that were not significantly different in standardized power.
Because the dominant frequency was significantly greater than
at least one other frequency in all ROIs, all regions may have
at least a weak bias (Fig. 3B). Results from associated non-
parametric tests were nearly identical to the results from
parametric tests. Only the right and left temporal pole differed
between the strong bias results, with high gamma 2 appearing
in the right rather than the left pole, and the weak bias results
are identical. Thus the parametric and nonparametric results
converge well, and we have displayed only the parametric
results for simplicity.

Given that the timescale to region relationship was not
robustly hierarchical or even corresponding in a one-to-one
manner, we used K-means cluster analysis, a data-driven ap-
proach, to examine the relationship between rhythmic neural
activity and cortical region in an unbiased manner. Because a
slight majority of regions did not display a strong bias toward
one particular frequency band, we expected that the spectral
profile of a region would show strong standardized power in
multiple bands in some cases. The clustering analysis, per-
formed on spectral dimensions of all subjects’ ROIs (i.e., 8
frequency band dimensions and 30 � 148 � 4,440 total ROIs)
indeed demonstrated the grouping of specific frequency bands
for some profiles. For the group maps in Fig. 4, the cluster to
which each ROI was assigned was chosen on the basis of the
most common cluster assignment across all subjects’ ROIs. To
determine how many spectral profiles or clusters existed in the
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Fig. 1. Standardized power maps for each frequency band. Spectral power was standardized from spatial measures of power separately for each band, effectively
creating minimal-maximal (min-max) maps in units of standard deviation; therefore, color bars are in units of z scores and do not correspond across frequency
bands so that locations of max and min can be shown separately for each band. Bands are divided into delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–14 Hz), beta
low (beta-L; 14–20 Hz), beta high (beta-H; 20–30 Hz), low gamma (gamma-L; 30–50 Hz), high gamma 1 (gamma-H1; 50–100 Hz), and high gamma 2
(gamma-H2; 100–150 Hz) and are shown by Destrieux atlas ROIs on pial surface maps of the fsaverage brain.
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Fig. 2. Interindividual variability maps. Interindividual variability of standardized power is demonstrated through the standard deviation of z scores across
subjects for each frequency band. Maps for each band are scaled separately to the max and min standard deviations.
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data, results for k � 2 through 10 clusters were examined to
find the optimal model reliability and complexity trade-offs.
The variance in power explained by number of clusters (i.e.,
total sum of squares minus within-cluster sum of squares,
divided by total sum of squares for percentage; Fig. 4A)
showed a gradual increase with number of clusters, but k � 3
was the first to explain �50% variance. Nonparametric per-
mutation tests were used to examine cross-subject clustering
reliability and assist in choosing k by comparing actual cluster
assignments with random cluster assignment of subjects’ ROIs
(see MATERIALS AND METHODS for full details of nonparametric
testing). They revealed that increasing k decreased the number
of ROIs failing to reach significance (those P � 0.05 after FDR
correction), i.e., ROIs inconsistently clustered across subjects
(Fig. 4B, blue line). There was a trade-off, however, with the
number of ROIs being assigned clusters on the basis of a
plurality (largest subset of subjects) but not a majority (more
than half of the subjects) vote among all subjects (Fig. 4B,
green line). Ideally, cluster assignments based on a majority
would be better, and this argued for use of a smaller k. Based
on these findings, results from k � 3, 4, and 5 clusters were all
deemed optimal. Figure 4C displays the results for k � 3
clusters, where the three spectral profiles (second column) one
with an alpha peak, one with delta, theta, low-beta, and high-
beta peaks, and one with a peak across the gamma bands, are quite

distinct and spatially localized to visual and parietal cortices,
dorsal frontal cortex, and temporal and ventral frontal cortex (first
row), respectively. The similarity matrix (third column) and mul-
tidimensional scaling (MDS) plot (fourth column) also show good
agreement with the K-means cluster assignments, demonstrating
consistent results across distinct methods. For k � 4 clusters
(Fig. 4D), an additional profile displays peaks in delta and
gamma bands and is located in lateral and ventral temporal and
frontal regions. For k � 5 clusters (Fig. 4E), an additional
profile exists, peaking in alpha but not as low in gamma
(gold line), and is distinct from another profile (green line),
which is high in alpha power but much lower in gamma
power. This profile is preferred in some regions of visual
and inferior parietal cortices. Similarity matrices and MDS
plots for k � 4 and 5 also show good agreement across
methods. White ROIs on cortical surface maps did not pass
the nonparametric permutation test after FDR correction for
multiple comparisons (P � 0.05), indicating that they were
inconsistently clustered across subjects. All colored ROIs
did pass the FDR-corrected tests (P � 0.05).

DISCUSSION

In this study, we examined if the proposed hierarchical
relationship between timescales of intrinsic rhythmic activ-
ity and anatomical region found in monkeys (Murray et al.

A

B

C

Fig. 3. Dominant frequency maps. A: cortical regions showing a strong bias (defined as a frequency with maximal standardized power � standardized power of
all other frequencies, P � 0.05, FDR corrected) toward the dominant frequency. Dominant frequency for an ROI is color coded according to the legend at left.
B: cortical regions showing a weak bias (frequency with maximal standardized power � standardized power of at least one other frequency, P � 0.05, FDR
corrected) toward the dominant frequency. C: for each ROI, 7 post hoc paired, one-sided t-tests were performed to compare frequencies. The histogram shows
the number of ROIs passing the stated number of t-tests. Only about half of the ROIs show a strong bias (all 7 tests passed at � � 0.05, FDR corrected), suggesting
many regions do not have strong timescale biases.

2859INTRINSIC CORTICAL FREQUENCY PROFILES

J Neurophysiol • doi:10.1152/jn.00061.2017 • www.jn.org

 by 10.220.32.246 on N
ovem

ber 16, 2017
http://jn.physiology.org/

D
ow

nloaded from
 

http://jn.physiology.org/


2014) holds in humans across the whole cortex, especially
when power measures across a wider spectrum of neuro-
physiological frequencies are taken into account. We did not
find a robust sensory-to-higher order hierarchical relation-
ship, suggesting that the relationship between the frequency

of rhythmic activity (and their corresponding timescales)
and cortical region may be more complex. Subsequent novel
data-driven analysis instead revealed that in many regions of
cortex, multiple timescales across the spectrum predomi-
nate.

A                                      B

C

D

E

Fig. 4. Clustering reveals several spectral profiles across the cortex. A: ROIs were clustered by spectral features using K-means analysis for k � 2 through 10
clusters. The percent variance explained by each cluster solution is graphed. B: nonparametric statistics demonstrated clustering consistency across subjects (i.e.,
whether each ROI consistently assigned the same cluster spectral profile across all subjects). The blue line in the graph plots the number of ROIs that were not
consistently clustered for each solution of k. The green line plots the number of ROIs that were consistently clustered across subjects but have a plurality (largest
subset), not a majority, of subjects picking the same spectral profile for a given ROI. As k increases, the number of possible clusters assigned to an ROI increases,
making it harder to achieve a majority of at least 16/30 subjects. Both graphs helped us determine that k � 3, 4, and 5 were solutions fitting a good trade-off
of model reliability and complexity. C: cortical maps of the k � 3 cluster solution (first column) where colors index the spectral profiles (second column). White
ROIs on cortical surface maps did not pass the permutation test after FDR correction. The similarity matrix (third column) shows reasonably tight clustering
across the 3 clusters. The multidimensional scaling (MDS) plot of ROIs (fourth column) also demonstrates tight clustering with this solution. D: the k � 4 cluster
solution. E: the k � 5 cluster solution.
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In pursuing novel characterization of broader spectral pro-
files and their similarities across cortex to answer the hierarchy
question, we were able to replicate and expand on previous
reports of localized power in the literature. Although EEG/
MEG sources are still rarely estimated, our results show that
the standardized power peaks in specific bands correspond well
with previous reports of both task-dependent and spontaneous
raw power. Delta power has previously been correlated with
PET metabolism in medial frontal regions (Alper et al. 2006),
whereas localized frontal-midline theta power concentrates in
the anterior cingulate cortex (Ishii et al. 1999; Mitchell et al.
2008). Based on modulation during eyes-open and -closed
paradigms, alpha has long been thought to index visual pro-
cessing and has been localized to both ventral and dorsal visual
regions (Capilla et al. 2014; Hari and Salmelin 1997; Salmelin
and Hari 1994; Tuladhar et al. 2007). Reactivity in the beta
band is often tied to motor movement and somatosensory
stimulation (Neuper et al. 2006) and has been localized to
somatosensory, motor, and frontal cortices (Baumgartner et al.
1991; Salenius et al. 1997; Sherman et al. 2016). Finally,
because different sub-bands within the whole gamma band
have been observed across the cortex during different tasks and
may index different processes (Crone et al. 2011), we did not
expect to see peaks in any particular region for gamma power.
Still, the distribution across inferior temporal and frontal re-
gions has been observed with spontaneous ECoG recordings
(Groppe et al. 2013).

Also, although it is only one step toward addressing the
study’s questions, we present one of the first approaches to
create comprehensive, source-localized spectral maps for 0.5–
150 Hz. Our approach confirms and builds on findings from
two recent studies that created whole cortex frequency maps up
to 48 or 120 Hz (see supplementary materials, respectively, of
Hillebrand et al. 2016 and Keitel and Gross 2016). Our results
are remarkably similar to the topographies of each band re-
ported by Hillebrand et al. (2016), except for a gamma-band
discrepancy where they only found frontal peaks. Our results
are also similar to the report by Keitel and Gross (2016),
including elevated gamma power in inferior temporal and
frontal regions, and their analysis focuses on the different
spectral modes in which an ROI may operate. Interestingly,
different source-localization algorithms were used across the
three studies (beamforming vs. MNE), but this made little
difference between the main results. Another powerful ap-
proach of correlating power in each band with functional MRI
BOLD resting-state networks has also revealed reactivity of
multiple frequency bands within each network (Liu et al. 2014;
Mantini et al. 2007), with alpha peaking in the visual network,
beta in somatomotor, delta (and sometimes theta and beta) in
auditory, and gamma in frontal regions. When specific cortical
regions are stimulated with transcranial magnetic stimulation
(TMS), the resonant frequencies of the ensuing oscillations are
also region specific: alpha in occipital, beta in parietal, and
beta-gamma in frontal regions (Rosanova et al. 2009). The
reproducibility of the spatial selectivity of these frequencies
across multiple methods further supports the robustness of
these findings and our novel approach to measuring and ex-
tending them.

Although they are useful to compare localization results with
other findings, these other studies did not directly address the
question of whether the timescales of different bands correlated

with a sensory-to-higher order processing hierarchy. Even if
we roughly define sensory regions as lower order processing
areas and association cortices as higher order processing areas,
we 1) do not find strong biases toward particular timescales
across all cortical regions and 2) do not exclusively find that
lower areas are biased to faster frequencies and higher areas are
biased to slower frequencies as predicted from the monkey
data. For example, delta power (timescales of ~250–1,000 ms)
is dominant on the transverse temporal cortex where early
sensory, lower order auditory processing occurs, and beta and
gamma power (timescales of ~10–50 ms) are dominant in
much of frontal cortex involved in higher level cognition.
Additionally, the clustering analysis shows that rhythmic ac-
tivity occurring at multiple timescales is widespread, with
higher theta and gamma activity in dorsal frontal regions and
higher delta and gamma activity in temporal and ventral frontal
regions.

Ultimately, a major goal is to elucidate the functions of this
rhythmic neural activity. Examining them in the context of
tasks has been very fruitful, but recent approaches have been
finding that examining rhythmic oscillations with regard to
spatial organization may also help. Recent studies have fo-
cused on the role of these oscillations in feedforward and
feedback processing. In monkeys, studies have found that
gamma synchronization is biased toward superficial layers and
alpha-beta toward infragranular layers of visual cortex (Buffalo
et al. 2011; van Kerkoerle et al. 2014; Xing et al. 2012).
Directed connectivity measures have shown that in the human
visual system, higher frequencies (gamma) may carry informa-
tion forward and lower frequencies (alpha, beta) carry it back
to lower order regions (Michalareas et al. 2016), whereas in the
human auditory system, gamma carries information forward
and delta-beta carries it back (Fontolan et al. 2014). Thus
frequency bands may serve as channels of communication
across layers and regions (see also Hillebrand et al. 2016), but,
crucially, this depends on activity operating in multiple bands
within each region. More recently, it has been proposed that the
ventral visual pathway is best thought of as containing recur-
rent occipitotemporal networks in contrast to a predominantly
serial hierarchy (Kravitz et al. 2013). Along with the oscilla-
tory feedforward/feedback mechanisms, these data also sug-
gest that an architecture where sensory regions only operate at
faster timescales and higher order areas at slower timescales to
integrate information over time (Honey et al. 2012) may be too
simplistic; perhaps it is the interactions between sensory and
high-order areas at faster or slower timescales that support
accumulating information.

A beneficial output from this study may also be the realiza-
tion that examining standardized power (assuming sufficient
sampling of power across the cortex) may be a useful approach
to comparing across frequency bands in future studies of
normal and patient brains. As pointed out before (Mantini et al.
2007), examining the whole spectrum gives a more complete,
less biased view of neural processing than examining individ-
ual bands. However, it has not always been clear how to
compare across the bands given the 1/f power drop-off, and this
is one way to move beyond that limitation (see Groppe et al.
2013 and Keitel and Gross 2016 for other approaches).

Some caveats exist with this analysis, however. First, gam-
ma-band activity suffers from low signal-to-noise ratio due to
the 1/f power drop-off in the brain and can be dominated by
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muscular artifacts. Although we took care to exclude as many
artifacts from the data as possible (eyeblinks and saccades via
ICA and jaw movements via sensoring of data with large-
amplitude gamma) and confirmed no associations between
ocular muscle activity and the gamma bands, the gamma
activity should still be interpreted with caution. A recent
review of this issue (Muthukumaraswamy 2013) reported no
guaranteed ways to remove all possible gamma artifacts but
suggested that after care is taken to remove them through
known methods, as we did, there is still value in examining the
gamma band. Second, this is an amplitude-centric analysis
because the frequency bias measures are based on relative
power. Many studies have demonstrated that the phase of
rhythmic activity plays a unique and important role in neural
processing and modulation, as well as perception and cognition
(Busch et al. 2009; Mathewson et al. 2009; Roux et al. 2013),
but phase has not been considered in this study. An analysis
that examines that feature could provide a more fine-grained
organization of cortical oscillations and answer how phase
varies across large areas oscillating at a particular frequency
(e.g., is there an alpha phase gradient between occipital and
parietal cortex akin to traveling waves?; Maris et al. 2016).
However, phase likely changes relative to the start of a resting-
state MEG scan, so phase relative to other rhythms across
cortex, i.e., connectivity analysis, may be a another approach to
understanding variations in phase (see Kida et al. 2016 for a
review of phase as an important component of many types of
connectivity analysis). Additionally, we have only examined
the intrinsic organization, so a task-based organization may
differ depending on the task requirements. For example, alpha
activity is also modulated in other sensory regions for modal-
ity-specific spatial attention (Haegens et al. 2011; Müller and
Weisz 2012), so the frequencies in these maps are not the only
operating modes for a particular region. Even in early visual
cortex, changes between spontaneous and naturalistic stimula-
tion are seen throughout the spectrum (Sellers et al. 2015).
Investigating how intrinsic and task-related organizations are
related, as well as whether they support or influence each other,
is an important avenue of research (Ghuman et al. 2013; Keitel
and Gross 2016; Lewis et al. 2016). Finally, the intrinsic
frequency organization may also change with time given that
the processes generating it are possibly nonstationary, but this
was not considered in this time-independent analysis because it
did not help address the hierarchy question. Keitel and Gross
(2016) have found similar spectral profiles to those presented
in this article by using a time-varying multitaper analysis, but
their results suggest that a region can take on multiple spectral
modes that may be superimposed in our maps. As an example,
the spectral profile with high delta, theta, and beta power in
frontal regions may reflect two modes of operation: one peak-
ing in delta-theta and one peaking in beta. Still, the method-
ology of nonstationary analysis must be executed and results
interpreted carefully because stationary data can be incorrectly
found to be nonstationary (e.g., Hlinka and Hadrava 2015;
Laumann et al. 2017).

In conclusion, we have found a complex organization be-
tween frequency and cortical region across the human brain
that does not follow a sensory-to-higher order hierarchy. More
work remains to elucidate the origins of this organization and
its functional utility.
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